King Abdulaziz University Department of Mathematics

Academic year 1439-1440 2018-2019

Math 110 "Students Syllabus"

Book: Calculus Metric Version Early Transcendentals by James Stewart 8th edition (No Calculator)

		Lectures			
Chapter Title	Section	Theoretical (Definitions & Theorem)	Examples	Exercises	нw
Appendixes	Appendix A Numbers, Inequalities and Absolute Values	 Intervals (Table). Inequalities Absolute value. Properties (1-6). 	1,2,3,4,6,7,8		
	Appendix B Coordinate Geometry and lines	 Slope of line. Point-slope form of the equation of a line. Slope-Intercept form of the equation of a line. Parallel and perpendicular lines. 	4,7,8		
	Appendix D Trigonometry	 Angles (convert formula). The Trigonometric functions. Trigonometric identities, 6-11, 15. Graphs of the trigonometric functions (sin, cos, tan only) (domain, period of all) (range of sin, cos, tan only). 	1,4	4,33	1- 11(odd) 29- 33(odd)

1.1 Four ways to represent a function	 Definitions: Function, Domain and Range. Vertical line test. Piecewise defined functions. Symmetry (odd & even) functions. ** Increasing and Decreasing Functions (open or closed intervals are correct) Add (NOTE 1) in math 110 notes. 	2,6,7,8,11 <mark>Read 1</mark>	9, 31, 33, 34, 38, 40, 49, 76.	7-10, 32-34, 41, 46, 73-78
1.2 Mathematical Models: A Catalog of essential functions	 Essential functions: Polynomials, power, rational, algebraic, trigonometric, exponential and logarithmic (ln x). Add (NOTE 2) in math 110 notes. Graphs of functions *. 	6	2	1
1.3 New functions from old functions	 Transformation of functions. i)Vertical and horizontal shifts. ii) Vertical and horizontal reflecting. Combination of functions (f±g, f.g, f/g, Composite Functions) and their domain. <u>Remark:</u> Don't simplify the function f/g before calculating the domain. 	1 (without $y=2\sqrt{x}$), 2, 3(b) add to example (3) Sketch the graph of (a) $y = cos(x - \frac{\pi}{2})$ Then find the domain and range, 5-9	1(a-f) Add to exercise (1) and solve it for $y = 2^x$ and $y = x^2$ 32	29- 39(odd) ,41,47 *try to sketch y = cosx - 3 y = 2 + cosx y = sinx y = sinx + 3 Then find the domain and range
1.4 Exponential Functions	Laws of Exponents.The Number e.	1	2, 13, 19, 20	1,3,17
1.5 Inverse Functions and Logarithms	 Definition1: (1-1) in P.56 or (If f(x₁) = f(x₂) then x₁ = x₂) Horizontal line test. Definition 2: Inverse Functions. How to find the inverse function. Logarithmic functions. Natural logarithm. Graphs and growth of natural logarithm. Inverse of Trigonometric Functions: (sin⁻¹, cos⁻¹, tan⁻¹ only). Identify the graphs of a function and it's inverse if they are given on the same axes+ <u>Add (NOTE 3) in math 110 notes.</u> 	1, 2, Add prove that the function $y=\sqrt[3]{\frac{x+2}{2}}$ is 1-1 "by def." 4, Replace f(x) in example(5) by f(x)= $\sqrt{x-1}$ 7-13 Read 3,6	22, 23, 37(b), 40, 48(a), 51(a,b), + $log_5(3x - 10) = 2$ 53(a), 57, 64, 68 (a) $arcsin(sin$ $7\pi/3)$ 68(b)	21- 26(odd) 35- 41(odd) 52

Ch1: Functions and Models

Ch2: Limits and derivatives	2.2 The Limits of a Functions	 Definition1-6. One-sided limits. Infinite limits: (vertical asymptote). Figure 17. Add (NOTE 3) in math 110 notes. 	7-10	9, 12, 39, 44	4,7,8,11
	2.3 Calculating Limits Using the Limits Laws مننتقل إلى درس 3.3	 The Limits Laws 1-11 Theorem1, 2. The squeezed theorem+ Figure 7. limit of trigonometric function(by theorem)*P.191 relation 2, P.192 relation 3. Add (NOTE 4) in math 110 notes. 	2(a)-9,11 example (8): Let it (T or F) instead of (Show that) <u>P. 195:</u> 5,6	15, 23, 24, 29, 59 p.197: 42, 45, 48, 49, 50	12, 19, 20,22,25, 27, 31, 32,35-37, p. 197: 39
	2.5 Continuity	 Definition1: Continuity at A number. Definition2: Continuity from the right and from the left. Theorem 4-9. Add (NOTE 5) in math 110 notes. 	2(a-c), 6, 8, 9 <mark>Read 5</mark> , 7	3, 45	17, 20, 21, 25, 38, 43
	2.6Limits at infinity	 Definition 1-3. Theorem 4-6. Infinite limits at infinity. lim axⁿ if n odd or even. Add (NOTE 6) in math 110 notes. 	1-11	36, 49	19, 30, 35, 37, 50
	2.7 Derivatives and rates of charge	 Tangents. Definition 1, 2. Derivatives. Definition 4, 5. 	1,4,5		

	2.8 The Derivatives as a Function	 Formulas 1, 2. Other Notations. Definition 3, Theorem 4. Higher Derivatives. 	3, 5, 7		29, 55
	3.1 The Derivative of polynomials and exponential function	 Constant functions. Power functions. <u>Definition of normal line P.175.</u> Horizontal tangent. New derivatives from old. Derivative of the natural exponential function. 	1-6, 8	23	3- 31(odd), 37
ation	3.2 The product and quotient rules	The product rule.Quotient rule.	1-5		3- 33(odd)
Ch3: Differenti Rules	3.3 Derivatives of Trigonometric Functions	 Formulas 4-6. Derivative of Trigonometric Functions. 	1,2(diff. only), 4-6	21, 42, 45, 48, 49, 50	1-7(odd), 39,51
	3.4 The Chain Rule and Parametric Equations	 The Chain Rule. The power rule combined with the chain rule. Formula 5. 	1, add to example (2) find y'', 3-9	23, 53	1- 15(odd), 44, 47, 48
	3.5 Implicit Differentiation	 Derivatives of Inverse Trigonometric Functions. 	1, 2(a,b), 3-5,	12, 25	5- 11(odd), 35, 37, 49, 55
	3.6 Derivatives of Logarithmic Functions	 Formulas 1-4. Logarithmic differentiation. 	1-8	19, 52	3- 15(odd), 21, 31, 43-47
Ch4: Applica tions of	4.1 Maximum and Minimum Values	 Definition 1, 2 Definition 6 (Critical Number). The closed Interval Method. 	8	3	5,29,47,5 3

Differe ntiation	4.3 How derivatives affect the shape of a graph	 Increasing/decreasing test The First derivative Test Definition: (concavity) + Concavity test. Definition: inflection point 	(بدون رسم)1,2,6	1, 9	5,11
---------------------	---	--	-----------------	------	------

Ine graphs that students must know:	Irigonometric functions (odd & even):	
$\mathbf{Y} = \sin x, \ \mathbf{y} = \cos x, \ \mathbf{y} = \tan x$	Even Odd	
$ \mathbf{Y} = \mathbf{x}, \mathbf{y} = \mathbf{x} , \mathbf{y} = \sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x}, \sqrt[5]{x}, \dots$	cos x sin x	
$Y = x^{-}$, (and similarly $y = x^{+}$, $y = x^{+}$,etc) $Y = x^{3}$, (and similarly $y = x^{5}$, $y = x^{7}$,etc)	sec x csc x	
$Y = \frac{1}{x}$, (and similarly $Y = \frac{1}{x^3}$, $Y = \frac{1}{x^5}$ etc)	tan x	
$Y = \frac{1}{x^2}$, (and similarly $Y = \frac{1}{x^4}$, $Y = \frac{1}{x^6}$ etc)	cot x	
Exponential function, logarithmic function.		

Marks distribution:-

	First Exam	Second Exam	Final Exam	
Time ; mark	120 min; 33 marks	120 min; 30 marks	120 min; 40 marks	Total: 100

	Note		

✓ Appendices A&B are not included in the exams.